
Using My Functions Should Follow My Checks: Understanding and
Detecting Insecure OpenZeppelin Code in Smart Contracts

Han Liu1, DaoyuanWu2, Yuqiang Sun3, Haijun Wang4, Kaixuan Li1, Yang Liu3, Yixiang Chen1

1 East China Normal University
2 The Hong Kong University of Science and Technology

3 Nanyang Technological University
4 Xi'an Jiaotong University

19 August 2024

suny0056@e.ntu.edu.sg

1 Background

➢ Smart contracts are programs running on blockchains.
➢ They usually provide financial services.
➢ Attacks on smart contracts has caused more than

$1,000,000,000 loss.

➢ Most tools are rule-based.
➢ 80% of vulnerabilities are machine undetectable.
➢ Rules are patterns for insecure implementation.

If we could learn from the secure implementations?

2

2 Motivating Example

Vulnerable contracts NFTX
from the Code4rena audit report

Standard contracts in
OpenZeppelin Code

Protection in
OpenZeppelin

Amount + fee
overflow

Solidity version < 0.8.0

3

3 Framework of ZepScope

OpenZeppelin

Library Code
MINER

Contacts
Code

Experts

Minor
Adjustments

Zep Facts

CHECKER Warnings

Facts
Understanding

Offline

Online

The Framework of ZepScope

[“NEQ”,[“from”, “owner”“msg.sender”,

“_msgSender()”],

“address(0) ”, ERROR_MSG: ERC20: transfer

from the zero address],

[“NEQ”,“to”,“address(0) ”, ERROR_MSG:

ERC20: transfer from the zero address“],……

Warning: Function transfer needs the following

checks:

[“NEQ”,“to”,“address(0) ”, ERROR_MSG:

ERC20: transfer from the zero address]

4

3 Framework of ZepScope

Mining OpenZeppelin Function Check

Fact before function call (_𝑚𝑖𝑛𝑡)

Fact during function call (_𝑚𝑖𝑛𝑡)

Fact after function call (_𝑚𝑖𝑛𝑡)

5

3 Framework of ZepScope

Challenge in Mining OpenZeppelin Function Check

➢ Alias analysis needed

➢ Relevance between facts after function call
and the function call itself.

6

3 Framework of ZepScope

Workflow of MINER

Function Definition Facts Mining

Inline
Function

Code

ffInline

Require/IF-Revert
Statement &

Modifier

Expression
Processing

Preliminary
Facts

Alias
Addition

Definition
Facts

"NEQ",["from","account"],

"address(0)",ERROR_MSG:

ERC20: burn from the zero

address"

Alias Analysis

Function Call Facts Mining

Internal
Function

Inline
Function

ggInline
Expression
Processing

Preliminary
Facts

Alias
Addition

Call
Facts

FunctionA:

{Caller B:[…],

Caller C:[…]}

Traverse
Nodes

Assignment
Statement

Relevance
Judgement

Require/IF-Revert
Statement
&Modifier

Related
Require

Statement

Inline
Function

Code

ffInline Expression
Processing

Equivalent
Variable

[𝑥, 𝑦]
Alias

Extending [𝑥, 𝑦, 𝑧 …]

Alias Set

[X,Y,Z],[A[X],

A[Y],A[Z],B]

f
Function

Code

f

Direct Caller
Function

g(f)

f
Function

Code

7

3 Framework of ZepScope

Understanding OpenZeppelin Facts

Total 1,435 facts, divided into four major categories:

 Address Compliance Assurance

 Access Control

 Overflow/Underflow Check

 Timestamp or State Check

277 high-level, 858 medium-level, and 300 low-level facts

8

3 Framework of ZepScope

Detecting Insecure OpenZeppelin Code in SCs

Contacts
Code

Target
Function

f

Target
Function

Identification

Direct
(Public)
Caller

C
Inline

Function

ccInline

Require
Statement&

Modifier

IF
Statement

Reverse IF
Statement

IF

Expression
Processing

Preliminary
Code

Checks

Code
Checks

Alias
Addition

Openzepplin
Facts

Warnings

Similarity
Match

Handling the
Scenarios with
Empty Facts

Validating
Security

Consequence

The workflow of CHECKER

Contract-Name-Included Identification&
Multi-Function-Based Identification

Two Step match: Matching Error
Messages & Matching the Checks➢ Equivalent Overflow Protection

➢ Equivalent Permissions
➢ Extra msg.value Checks

9

4 Evaluation

RQ1: Comparison with the SOTA Tools

Datasets:
51 real-world security bugs caused by insecure OpenZeppelin code. These bugs were sourced from
security incidents reported on DeFiHackLabs, Twitter, SmartBugs Curated datasets, and audit reports
from Code4rena, Sherlock, and Ethereum Commonwealth

10

4 Evaluation

RQ2: Accuracy and Performance

Datasets:
top 15,000 contracts of three chains (Ethereum, BSC, and Polygon), ranked by the balances of the contracts

Results

Warning Distribution

Performance : 42.39 seconds on average per contract

11

4 Evaluation

RQ3: Security Findings

Finding 1: 15 new vulnerabilities involves contracts contain $439,333+

12

4 Evaluation

RQ3: Security Findings

Finding 2: Pervasive Absence of Zero Address Checks

➢ Avoid unintentional permanent locking of
tokens due to human errors or software
glitches

➢ Differentiate the _transfer function from the
burn function

➢ Avoid inaccuracies in the total supply figures
while also preventing extra gas fee loss

Can lead phishing attacks

13

4 Evaluation

RQ3: Security Findings

Finding 3: A Campaign of Intentionally Loosing the Checks

14

4 Evaluation

RQ4: Cross-Chain Result Comparison

15

Thanks & QA

Han Liu1, DaoyuanWu2, Yuqiang Sun3, Haijun Wang4, Kaixuan Li1, Yang Liu3, Yixiang Chen1

1 East China Normal University
2 The Hong Kong University of Science and Technology

3 Nanyang Technological University
4 Xi'an Jiaotong University

Email: suny0056@e.ntu.edu.sg

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

