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1 Background

➢ Smart contracts are programs running on blockchains.
➢ They usually provide financial services.
➢ Attacks on smart contracts has caused more than 

$1,000,000,000 loss.

➢ Most tools are rule-based.
➢ 80% of vulnerabilities are machine undetectable.
➢ Rules are patterns for insecure implementation.

If we could learn from the secure implementations?
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2 Motivating Example

Vulnerable contracts NFTX 
from the Code4rena audit report

Standard contracts in 
OpenZeppelin Code

Protection in 
OpenZeppelin

Amount + fee 
overflow

Solidity version < 0.8.0
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3 Framework of ZepScope

OpenZeppelin

Library Code
MINER

Contacts
Code

Experts

Minor
Adjustments

Zep Facts

CHECKER Warnings

Facts
Understanding

Offline

Online

The Framework of ZepScope

[“NEQ”,[“from”, “owner”“msg.sender”,

“_msgSender()”],

“address(0) ”, ERROR_MSG: ERC20: transfer 

from the zero address],

[“NEQ”,“to”,“address(0) ”, ERROR_MSG: 

ERC20: transfer from the zero address“],……

Warning: Function transfer needs the following 

checks:

[“NEQ”,“to”,“address(0) ”, ERROR_MSG: 

ERC20: transfer from the zero address]
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3 Framework of ZepScope

Mining OpenZeppelin Function Check

Fact before function call (_𝑚𝑖𝑛𝑡)

Fact during function call (_𝑚𝑖𝑛𝑡)

Fact after function call (_𝑚𝑖𝑛𝑡)

5



3 Framework of ZepScope

Challenge in Mining OpenZeppelin Function Check

➢ Alias analysis needed

➢ Relevance between facts after function call 
and the function call itself.

6



3 Framework of ZepScope

Workflow of MINER
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3 Framework of ZepScope

Understanding OpenZeppelin Facts

Total 1,435 facts, divided into four major categories:

 Address Compliance Assurance

 Access Control

 Overflow/Underflow Check

 Timestamp or State Check

277 high-level, 858 medium-level, and 300 low-level facts
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3 Framework of ZepScope

Detecting Insecure OpenZeppelin Code in SCs
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The workflow of CHECKER

Contract-Name-Included Identification&
Multi-Function-Based Identification

Two Step match: Matching Error 
Messages & Matching the Checks➢ Equivalent Overflow Protection

➢ Equivalent Permissions
➢ Extra msg.value Checks
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4 Evaluation

RQ1: Comparison with the SOTA Tools

Datasets: 
51 real-world security bugs caused by insecure OpenZeppelin code. These bugs were sourced from 
security incidents reported on DeFiHackLabs, Twitter, SmartBugs Curated datasets, and audit reports 
from Code4rena, Sherlock, and Ethereum Commonwealth 
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4 Evaluation

RQ2: Accuracy and Performance

Datasets: 
top 15,000 contracts of three chains (Ethereum, BSC, and Polygon), ranked by the balances of the contracts

Results

Warning Distribution

Performance : 42.39 seconds on average per contract
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4 Evaluation

RQ3: Security Findings

Finding 1: 15 new vulnerabilities involves contracts contain $439,333+
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4 Evaluation

RQ3: Security Findings

Finding 2: Pervasive Absence of Zero Address Checks

➢ Avoid unintentional permanent locking of 
tokens due to human errors or software 
glitches

➢ Differentiate the _transfer function from the 
burn function

➢ Avoid inaccuracies in the total supply figures 
while also preventing extra gas fee loss

Can lead phishing attacks
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4 Evaluation

RQ3: Security Findings

Finding 3: A Campaign of Intentionally Loosing the Checks
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4 Evaluation

RQ4: Cross-Chain Result Comparison
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