GPTScan: Detecting Logic
Vulnerabilities in Smart
Contracts by Combining
GPT with Program Analysis

Yugiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun
Wang, Zhengzi Xu, Xiaofei Xie, Yang Liu

Nanyang Technological University
MetaTrust Labs

East China Normal University

TN

Xi‘an Jiaotong University

Singapore Management University

Background S
Vulnerability detection for smart contracts UNWERS‘TY

* Smart contracts are programs running
on block chains

* They usually provide financial services

e Attacks on smart contracts has caused
more than $1,000,000,000 loss

* More than 80% of the exploitable bugs
are machine undetectable

* The reason is that most of them are
business logic related

4/19/2024 Sun Yugiang - ICSE 2024

Example T NANVANG
: % TECHNOLOGICAL
How to detect logic bugs? 95 UNERSITY

* The first depositor could get all
the shares and manipulate the 1
price per share + voken saieTranferfron (nsg. sender, adirers(tnis) _amount);
5
6

function deposit(uint256 _amount) extermnal returns (uint256) {
uint256 _pool = balance();

uint256 _after = token.balanceOf (address(this));
_amount = _after.sub(_before); // Additional check for deflationary

* To detect the vuln in the example:

7 uint256 _shares = 0;
8 if (totalSupply () == 0) {
o o . 9 _shares = _amount;
1. Know it is deposit 10) etz
11 _shares = (_amount.mul (totalSupply())).div(_pool);

12 }
13

2. Find the share calculation 1y nr(neg.sender, _shares);
statement

3. Check the if branch

4/19/2024 Sun Yugiang - ICSE 2024

A NANYANG

C h a | | e n ge S TECHNOLOGICAL

UNIVERSITY

1. There are too much code for
LLMs to read in a project

2. It’s hard to understand the
functionality of the given code

3. LLMs may not always give the
correct answer

4/19/2024 Sun Yugiang - ICSE 2024

Method
Overview

iwhwgd NANYANG

% TECHNOLOGICAL
UNIVERSITY

The FISRT tool on logic bug detection for smart contracts

1. Filtering for candidate code segments

e 2. Scenario and property matches

3. Static analysis-based confirmation

Multi- §4.3: Filtering for

§4.2: GPT-based Scenario
and Property Matching

Scenario- Property-

dimensional Candidate Functions
filtering
Smart \ St:tic Candidate
Contract § o function
Proi Reachability :
roje Analysis pafls

» based GPT — based GPT

Recognizing

matching matching

> key var/stmts
via GPT

§4.4: From GPT Recognition
to Static Confirmation
[

Supplied to
static analysis —
for confirmation

Vuln types +
Key variables
& statement

4/19/2024

Sun Yugiang - ICSE 2024

Method 8 NANYANG
Step 1: Filtering

UNIVERSITY

Text-based Filter

Function Name Function Content Access Control Call Chain

Whitelist-based Filter

Signatures of commonly used libraries from OpenZeppelin

Reachability Analysis

Use call graph to find reachable functions

4/19/2024 Sun Yugiang - ICSE 2024

VMethod R NANYANG

Step 2: Scenario and property matching

UNIVERSITY
o S C e n a ri O I\/I a tC h i n g System: You are a smart contract auditor. You will be asked

gquestions related to code properties. You can mimic an-
e 3 0 swering them in the background five times and provide me

[=
M u |t| p I e-C h olce q u eSt 1oNns with the most frequently appearing answer. Furthermore,
please strictly adhere to the output format specified in the

L M atc h i ng t h e fu N Ctio Na I ity Of t h e question; there is no need to explain your answer.

COd e Given the following smart contract code, answer the
guestions below and organize the result in a json format
like {"17: "Yes" or "No”, "2": "Yes" or "No"}L.

: 1" [1SCENARIO_14]?
¢ P ro p e rty IVI a tc h I n g 2" [#SCENARIO_2%]? System: You are a smart contract auditor. You will be asked

questions related to code properties. You can mimic an-
swering them in the background five times and provide me
with the most frequently appearing answer. Furthermore,

* Yes/No questions L
. lease strictly adhere to the output format specified in the
o M atC h N g t h e ro Ot Ca u Se Of t h e Euextinn; th;re is no need to EK]:JLHiI'I your aixwer.

\AS| I Nera b I I It Ies Does the following smart contract code

"[%SCENARIO+PROPERTY%]"? Answer only "Yes" or
"Ma".

[%CODE%]

[%CODE%]

4/19/2024 Sun Yugiang - ICSE 2024

Method
Rules

TECHNOLOGICAL
UNIVERSITY

Vulnerability Type | Scenario and Property Filtering Type Static Check
Approval Not Scenario: add or check approval via require/if statements before the token transfer
. ; FNI, FCCE VC
Cleared Property: and there is no clear/reset of the approval when the transfer finishes its main branch or encounters exceptions
Ricky First Scenario: deposit/mint/add the liquidity pool/amount/share
IDeB;nsl':: Property: and set the total share to the number of first deposit when FCCE DF, VC
|

the supply/liquidity is 0

Scenario: have code statements that get or calculate LP token's value/price
Property: based on the market reserves/ AMMprice/exchangeRate OR the custom token FNK, FCCE DF
balanceOf/totalSupply/amount/liquidity calculation
Price Manipulation | Scenario: buy some tokens

by Buying Tokens | Property: using Uniswap/PancakeSwap APls
Scenario: calculate vote amount/number
Property: and this vote amount/number is from a vote weight that might FCCE DF
be manipulated by flashloan

Scenario: mint or vest or collect token/liquidity/earning and assign them to

the address recipient or to variable

Property: and this operation could be front run to benefit the account/address that can be controlled by the parameter and
has no sender check in the function code

Price Manipulation
by AMM

FNK, FCE FA

Vote Manipulation
by Flashloan

Front Running FNK, FPNC, FPT, FCNE, FNM FA

Wrong Interest Scenario: have inside code statements that update/accrue interest/exchange rate ECE CEN oc
Rate Order Property: and have inside code statements that calculate/assign/distribute the balance/share/stake/fee/loan/reward '
Wrang Scenario: have inside code statements that invoke user checkpaint
. . . i ; , . , FCE, CEN 0cC
Checkpoint Order | Property: and have inside code statements that calculate/assign /distribute the balance/share/stake/fee/loan /reward
Scenario: involve calculating swap/liquidity or adding liquidity, and there is asset exchanges or price queries
Slippage Property: but this operation could be attacked by Slippage/Sandwich Attack due to no FCCE, FCNCE VC
slip limit/minimum value check
Unauthorized Scenario: involve transfering token from an address different from message sende
uthortz INVOlve transiening r adress dierent ir & r FNK, FCNE, FCE, FCNCE, FPNC | VC
Transfer Property: and there is no check of allowance/approval from the address owner

4/19/2024 Sun Yugiang - ICSE 2024

Method
Step 3: Static analysis-based confirmation

1 NANYANG

TECHNOLOGICAL
UNIVERSITY

An Example Prompt for GPT Recognition

System: (same as in Figure 4, omitted here for brevity.)

In this function, which variable or function holds the total
supply/liquidity AND is used by the conditional branch to

b I_I_M USEd to f| nd rEIatEd determine the supply/liquidity is 0?7 Please answer in a
. . = section starts with "VariableB:".
varia b|€S fOr StatIC vu I Nera b| I |ty In this function, which variable or function holds the
: value of the deposit/mint/add amount? Please answer in a
C h ec k N g section starts with "VariableC:".

Please answer in the following json format:
{"VariableA":{"Variable = name":"Description"}, "Vari-

ableB":{"Variable name":"Description"}, "Vari-
ableC":{"Variable name":"Description"}}
[%#CODE%]

\ v

4/19/2024 Sun Yugiang - ICSE 2024

Method o
Step 3: Static analysis-based confirmation 9 RS

Ask GPT model for related variables/expressions

Map variable to vulnerability models

Validate the variables/expressions

Validate the name Validate the description

Apply static check rules

Dataflow Value Comparation Execution Order Function Call Arguments

4/19/2024 Sun Yugiang - ICSE 2024

Evaluation o e
Setup & Research Questions 95 UNERSITY

* Model selection
e GPT-3.5 Turbo

* Dataset
* Top 200 contracts from 6 chains: 303 projects, 0 logic vulnerability
 Web3Bugs: 72 projects, 48 logic vulnerabilities
» DefiHacks: 13 projects, 14 logic vulnerabilities

* Research Questions:
 RQ1 & 2: How effective and precise is GPTScan?
 RQ3: How effective is the static analysis-based confirmation?
 RQ4: What's the speed and financial cost of GPTScan?
* RQ5: Could GPTScan find new vulnerabilities?

4/19/2024 Sun Yugiang - ICSE 2024

Evaluation o e
RQ1 & 2: Effectiveness and precision %5 RN

* FP Rate:
* Top 200: 4.39%
* Precision:
* Web3Bugs: 57.14% Dataset Name TP TN FP FN Sum
* DefiHacks: 90.91% Top200 0 283 13 0 29
e Recall: Web3Bugs 40 154 30 8 232
' DefiHacks 10 19 1 4 34

 Web3Bugs: 83.33%
e DefiHacks: 71.43%

4/19/2024 Sun Yugiang - ICSE 2024

Evaluation o e
RQ1 & 2: Effectiveness and precision %5 RN

* Baselines:

e Slither:

e Supported Types: Unauthorized
Transfer (unchecked-transfer,
arbitrary-send-eth, arbitrary-send-

Dataset Name TP TN FP FN Sum

. i;C:SL dOTP Web3B Top200 oo 1 oo
S, an s on We ugs Web3Bugs 40 154 30 8 232
* MetaScan: DefiHacks 10 19 1 4 34

e Supported Types: Price Manipulation

* Recall of 58.33% and precision of
100%

4/19/2024 Sun Yugiang - ICSE 2024

Evaluation o e
RQ3: Effectiveness of static confirmation 9IRSy

Vulnerability Type Before After
Approval Not Cleared 34 12
Risky First Deposit 100 21
Price Manipulation by AMM 187 114
Price Manipulation by Buying Tokens 8 8
s REdUCGd nearly 2/3 FPs Vote Manipulation by Flashloan 2 0
Front Running 6 4
2 Caused Only 1FN Wrong Interest Rate Order 150 11
Wrong Checkpoint Order 49 1
Slippage 99 42
Unauthorized Transfer 12 8
Total 647 221

4/19/2024 Sun Yugiang - ICSE 2024

Evaluation T@g{lﬁc}%ﬁg
RQ4: Time and financial cost 95 TR

e 14.39 seconds per thousand Datacet o o T/KL CUKL

: Top200 13432 143737 07507 1070 0.005589

lines of code Web3Bugs 319.88 4,980.57 3.0682 1557 0.018658

: DefiHacks ~ 17.82 375.41 02727 21.06 0.015303

* 0.01 USD per thousand lines of Overall 472.02 6.793.35 4.9984 14.39 0.010589
COde * KL for KLoC; ** T for Time; *** C for Financial Cost.

4/19/2024 Sun Yugiang - ICSE 2024

Evaluation
RQ5: Newly detected vulnerabi

[C, SN

0~ o

10
11
12
13
14
15
16

* Found 3 new vulnerabilities :

e 1 case of front running :
* 1 case of price manipulation j

* 1 case of risky first depositor b

12

Sun Yugiang - ICSE 2024

TECHNOLOGICAL
UNIVERSITY

lities

function deposit(uint _amount) external {
uint _pool = balance();
uint _totalSupply = totalSupply();
if (_totalSupply == 0 && _pool > 0) { // trading fee accumulated while
there were no IF LPs
vusd.safeTransfer (governance, _pool);
_pool = 0;
}
uint shares = 0;
if (_pool == 0) {
shares = _amount;
} else {
shares = _amount * _totalSupply / _pool;
}
}

function pendingRewards(uint256 _pid, address _user) external view returns
(uint256) {
PoolInfo storage pool = poolInfol_pid];

UserInfo storage user = userInfol_pid][_user];
uint256 accRewardsPerShare = pool.accRewardsPerShare;
uint256 1lpSupply = pool.lpToken.balanceOf (address(this));
if (block.number > pool.lastRewardBlock && 1lpSupply != 0) {
uint256 multiplier = getMultiplier (pool.lastRewardBlock, block.
number) ;
uint256 rewardsAccum = multiplier.mul(rewardsPerBlock) .mul(pool.
allocPoint).div(totalAllocPoint);
accRewardsPerShare = accRewardsPerShare.add (rewardsAccum.mul (1el2).

div (1pSupply));
13
return user.amount.mul (accRewardsPerShare).div(le12).sub(user.
rewardDebt);

/// @notice The lp tokens that the user contributes need to have been
transferred previously, using a batchable router.
function mint(address to)
public
beforeMaturity
returns (uint256 minted)

uint256 deposit = pool.balanceOf (address(this)) - cached;
minted = _totalSupply * deposit / cached;

cached += deposit;

_mint (to, minted);

Summar e NANYANG
y UNIVERSITY

1. GPTScan is the first tool for logic vulnerability detection on smart
contracts

2. GPTScan combined static program analysis with LLMs for both
semantic understanding and precision

3. GPTScan is more effective than traditional tools on logic bugs
GPTScan is cheap and fast
5. GPTScan is extensive by adding more rules

4/19/2024 Sun Yugiang - ICSE 2024

iwhwgd NANYANG

Limitations 95 CRIVERSITY

* Rule generation
* Time-consuming for manually tuned rules
e Low-accuracy for automatic generated (by LLM) rules

* Rule matching
* Prompt based matching will not work when the number of rules increased

* These two problems are partially solved in our new preprint

 LLM4Vuln: A Unified Evaluation Framework for Decoupling and
Enhancing LLMs’ Vulnerability Reasoning

4/19/2024 Sun Yugiang - ICSE 2024

https://arxiv.org/abs/2401.16185
https://arxiv.org/abs/2401.16185

Future AI4SE Framework

4/19/2024

Application
Vulnerability PoC/Exploit . -
Detection Generation Fuzzing Repairing
Sub-tasks Verifiers
Al Agents Program Analysis User Specifications

General Models

LLM Sub-task Generator
Code Models

Knowledge Provider

Prompt RAG
Language Support Knowle
C/C++ Java Vulnerability
Solidity Functionality
Abstract & Matching Layer
Clone-based NLP-based
Code/Document

Sun Yugiang - ICSE 2024

Fine-tuned Models

Fine-tune

dge Database

Architecture

Other non-func

Binary

iwhwgd NANYANG

TECHNOLOGICAL
UNIVERSITY

,-_ _n_» A..g_'- __~

Email: suny0056@e.i n’ru edu. sg =

SUN YUQIANG - ICSE 2024 4/19/2024

i < e

	幻灯片 1: GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program Analysis
	幻灯片 2: Background Vulnerability detection for smart contracts
	幻灯片 3: Example How to detect logic bugs?
	幻灯片 4: Challenges
	幻灯片 5: Method Overview
	幻灯片 6: Method Step 1: Filtering
	幻灯片 7: Method Step 2: Scenario and property matching
	幻灯片 8: Method Rules
	幻灯片 9: Method Step 3: Static analysis-based confirmation
	幻灯片 10: Method Step 3: Static analysis-based confirmation
	幻灯片 11: Evaluation Setup & Research Questions
	幻灯片 12: Evaluation RQ1 & 2: Effectiveness and precision
	幻灯片 13: Evaluation RQ1 & 2: Effectiveness and precision
	幻灯片 14: Evaluation RQ3: Effectiveness of static confirmation
	幻灯片 15: Evaluation RQ4: Time and financial cost
	幻灯片 16: Evaluation RQ5: Newly detected vulnerabilities
	幻灯片 17: Summary
	幻灯片 18: Limitations
	幻灯片 19: Future AI4SE Framework
	幻灯片 20: Thanks & QA

